Do Cardiac Myofibrils Exhibit Residual Force Enhancement Properties?
نویسندگان
چکیده
منابع مشابه
Residual force enhancement in myofibrils and sarcomeres.
Residual force enhancement has been observed following active stretch of skeletal muscles and single fibres. However, there has been intense debate whether force enhancement is a sarcomeric property, or is associated with sarcomere length instability and the associated development of non-uniformities. Here, we studied force enhancement for the first time in isolated myofibrils (n=18) that, owin...
متن کاملThe role of sarcomere length non-uniformities in residual force enhancement of skeletal muscle myofibrils.
The sarcomere length non-uniformity theory (SLNT) is a widely accepted explanation for residual force enhancement (RFE). RFE is the increase in steady-state isometric force following active muscle stretching. The SLNT predicts that active stretching of a muscle causes sarcomere lengths (SL) to become non-uniform, with some sarcomeres stretched beyond actin-myosin filament overlap (popping), cau...
متن کاملMuscle residual force enhancement: a brief review
Muscle residual force enhancement has been observed in different muscle preparations for more than half a century. Nonetheless, its mechanism remains unclear; to date, there are three generally accepted hypotheses: 1) sarcomere length non-uniformity, 2) engagement of passive elements, and 3) an increased number of cross-bridges. The first hypothesis uses sarcomere non-homogeneity and instabilit...
متن کاملForce depression in single myofibrils.
Force depression after active shortening has been observed in different muscle preparations. It has been assumed that force depression is caused by the development of sarcomere length nonuniformities after shortening. However, this hypothesis has never been investigated in a preparation where individual sarcomere lengths could be directly measured. Here, we investigated force depression in sing...
متن کاملCalcium sensitivity of residual force enhancement in rabbit skinned fibers.
Isometric force after active stretch of muscles is higher than the purely isometric force at the corresponding length. This property is termed residual force enhancement. Active force in skeletal muscle depends on calcium attachment characteristics to the regulatory proteins. Passive force has been shown to influence calcium attachment characteristics, specifically the sarcomere length dependen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2019
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2018.11.2173